Final Exam - Function Spaces B. Math. III

15 November, 2023
(i) Duration of the exam is 3 hours.
(ii) The maximum number of points you can score in the exam is 100 (total $=110$).
(iii) You are not allowed to consult any notes or external sources for the exam.

Name: \qquad

Roll Number: \qquad

For $f \in L^{1}[-\pi, \pi]$, the Fourier coefficients of f are given by

$$
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x, b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x .
$$

The series $\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)$ is the Fourier series of f. The nth partial sum (Cesaro mean, respectively) of the Fourier series for f is denoted by $s_{n}(f)\left(\sigma_{n}(f)\right.$, respectively).

1. Let $S^{1}:=\{z \in \mathbb{C}:|z|=1\}$, and let \mathscr{A} be the algebra of functions on S^{1} of the form,

$$
f(z)=\sum_{n=0}^{N} c_{n} z^{n},
$$

where $c_{n} \in \mathbb{C}$.
(a) (10 points) Show that \mathscr{A} separates points on S^{1} and vanishes at no point of S^{1}.
(b) (5 points) Show that there are continuous complex-valued functions on S^{1} which are not in the uniform closure of \mathscr{A}.

Total for Question 1: 15
2. (20 points) Assume that f is 2π-periodic and continuous on \mathbb{R}. Prove that the sequence of Césaro means of the Fourier series for f converges uniformly on \mathbb{R} to f.

Total for Question 2: 20
3. (20 points) Suppose that f is a 2π-periodic function on \mathbb{R} that satisfies the Lipschitz condition of order $\alpha(0<\alpha \leq 1)$; that is $|f(x+h)-f(x)| \leq C|h|^{\alpha}$ for $C>0$ independent of x. Show that if a_{n}, b_{n} are Fourier coefficients of f, then

$$
a_{n}=O\left(n^{-\alpha}\right), b_{n}=O\left(n^{-\alpha}\right)
$$

Total for Question 3: 20
4. (20 points) Let $f \in L^{1}([-\pi, \pi])$ and $x \in(-\pi, \pi)$ such that $f(x) \neq \pm \infty$. Then x is called a Lebesgue point for f if

$$
\lim _{r \rightarrow 0} \frac{1}{r} \int_{x}^{x+r}|f(t)-f(x)| d t=0
$$

For $x \in(-\pi, \pi)$ a Lebesgue point for f, show that

$$
\lim _{N \rightarrow \infty} \sigma_{N}(f)(x)=f(x)
$$

Total for Question 4: 20
5. (20 points) Show that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

Total for Question 5: 20
6. (15 points) If f is a 2π-periodic function in $C^{1}(\mathbb{R})$, then show that

$$
\left\|f-s_{N}\right\|_{\infty}=o\left(\frac{1}{\sqrt{N}}\right) .
$$

(In other words, the error term for uniform approximation of f via s_{N} declines like "little oh" of $\frac{1}{\sqrt{N}}$.)

Total for Question 6: 15

